Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available October 1, 2026
-
A constraint satisfaction problem (CSP),\(\textsf {Max-CSP}(\mathcal {F})\), is specified by a finite set of constraints\(\mathcal {F}\subseteq \lbrace [q]^k \rightarrow \lbrace 0,1\rbrace \rbrace\)for positive integersqandk. An instance of the problem onnvariables is given bymapplications of constraints from\(\mathcal {F}\)to subsequences of thenvariables, and the goal is to find an assignment to the variables that satisfies the maximum number of constraints. In the (γ ,β)-approximation version of the problem for parameters 0 ≤ β ≤ γ ≤ 1, the goal is to distinguish instances where at least γ fraction of the constraints can be satisfied from instances where at most β fraction of the constraints can be satisfied. In this work, we consider the approximability of this problem in the context of sketching algorithms and give a dichotomy result. Specifically, for every family\(\mathcal {F}\)and every β < γ, we show that either a linear sketching algorithm solves the problem in polylogarithmic space or the problem is not solvable by any sketching algorithm in\(o(\sqrt {n})\)space. In particular, we give non-trivial approximation algorithms using polylogarithmic space for infinitely many constraint satisfaction problems. We also extend previously known lower bounds for general streaming algorithms to a wide variety of problems, and in particular the case ofq=k=2, where we get a dichotomy, and the case when the satisfying assignments of the constraints of\(\mathcal {F}\)support a distribution on\([q]^k\)with uniform marginals. Prior to this work, other than sporadic examples, the only systematic classes of CSPs that were analyzed considered the setting of Boolean variablesq= 2, binary constraintsk=2, and singleton families\(|\mathcal {F}|=1\)and only considered the setting where constraints are placed on literals rather than variables. Our positive results show wide applicability of bias-based algorithms used previously by [47] and [41], which we extend to include richer norm estimation algorithms, by giving a systematic way to discover biases. Our negative results combine the Fourier analytic methods of [56], which we extend to a wider class of CSPs, with a rich collection of reductions among communication complexity problems that lie at the heart of the negative results. In particular, previous works used Fourier analysis over the Boolean cube to initiate their results and the results seemed particularly tailored to functions on Boolean literals (i.e., with negations). Our techniques surprisingly allow us to get to generalq-ary CSPs without negations by appealing to the same Fourier analytic starting point over Boolean hypercubes.more » « less
-
Aggarwal, Divesh (Ed.)We study the problem of function inversion with preprocessing where, given a function f : [N] → [N] and a point y in its image, the goal is to find an x such that f(x) = y using at most T oracle queries to f and S bits of preprocessed advice that depend on f. The seminal work of Corrigan-Gibbs and Kogan [TCC 2019] initiated a line of research that shows many exciting connections between the non-adaptive setting of this problem and other areas of theoretical computer science. Specifically, they introduced a very weak class of algorithms (strongly non-adaptive) where the points queried by the oracle depend only on the inversion point y, and are independent of the answers to the previous queries and the S bits of advice. They showed that proving even mild lower bounds on strongly non-adaptive algorithms for function inversion would imply a breakthrough result in circuit complexity. We prove that every strongly non-adaptive algorithm for function inversion (and even for its special case of permutation inversion) must have ST = Ω(N log (N) log (T)). This gives the first improvement to the long-standing lower bound of ST = Ω(N log N) due to Yao [STOC 90]. As a corollary, we conclude the first separation between strongly non-adaptive and adaptive algorithms for permutation inversion, where the adaptive algorithm by Hellman [TOIT 80] achieves the trade-off ST = O(N log N). Additionally, we show equivalence between lower bounds for strongly non-adaptive data structures and the one-way communication complexity of certain partial functions. As an example, we recover our lower bound on function inversion in the communication complexity framework.more » « less
-
Kumar, Amit; Ron-Zewi, Noga (Ed.)We study the Matrix Multiplication Verification Problem (MMV) where the goal is, given three n × n matrices A, B, and C as input, to decide whether AB = C. A classic randomized algorithm by Freivalds (MFCS, 1979) solves MMV in Õ(n²) time, and a longstanding challenge is to (partially) derandomize it while still running in faster than matrix multiplication time (i.e., in o(n^ω) time). To that end, we give two algorithms for MMV in the case where AB - C is sparse. Specifically, when AB - C has at most O(n^δ) non-zero entries for a constant 0 ≤ δ < 2, we give (1) a deterministic O(n^(ω-ε))-time algorithm for constant ε = ε(δ) > 0, and (2) a randomized Õ(n²)-time algorithm using δ/2 ⋅ log₂ n + O(1) random bits. The former algorithm is faster than the deterministic algorithm of Künnemann (ESA, 2018) when δ ≥ 1.056, and the latter algorithm uses fewer random bits than the algorithm of Kimbrel and Sinha (IPL, 1993), which runs in the same time and uses log₂ n + O(1) random bits (in turn fewer than Freivalds’s algorithm). Our algorithms are simple and use techniques from coding theory. Let H be a parity-check matrix of a Maximum Distance Separable (MDS) code, and let G = (I | G') be a generator matrix of a (possibly different) MDS code in systematic form. Our deterministic algorithm uses fast rectangular matrix multiplication to check whether HAB = HC and H(AB)^T = H(C^T), and our randomized algorithm samples a uniformly random row g' from G' and checks whether g'AB = g'C and g'(AB)^T = g'C^T. We additionally study the complexity of MMV. We first show that all algorithms in a natural class of deterministic linear algebraic algorithms for MMV (including ours) require Ω(n^ω) time. We also show a barrier to proving a super-quadratic running time lower bound for matrix multiplication (and hence MMV) under the Strong Exponential Time Hypothesis (SETH). Finally, we study relationships between natural variants and special cases of MMV (with respect to deterministic Õ(n²)-time reductions).more » « less
-
Kumar, Amit; Ron-Zewi, Noga (Ed.)For S ⊆ 𝔽ⁿ, consider the linear space of restrictions of degree-d polynomials to S. The Hilbert function of S, denoted h_S(d,𝔽), is the dimension of this space. We obtain a tight lower bound on the smallest value of the Hilbert function of subsets S of arbitrary finite grids in 𝔽ⁿ with a fixed size |S|. We achieve this by proving that this value coincides with a combinatorial quantity, namely the smallest number of low Hamming weight points in a down-closed set of size |S|. Understanding the smallest values of Hilbert functions is closely related to the study of degree-d closure of sets, a notion introduced by Nie and Wang (Journal of Combinatorial Theory, Series A, 2015). We use bounds on the Hilbert function to obtain a tight bound on the size of degree-d closures of subsets of 𝔽_qⁿ, which answers a question posed by Doron, Ta-Shma, and Tell (Computational Complexity, 2022). We use the bounds on the Hilbert function and degree-d closure of sets to prove that a random low-degree polynomial is an extractor for samplable randomness sources. Most notably, we prove the existence of low-degree extractors and dispersers for sources generated by constant-degree polynomials and polynomial-size circuits. Until recently, even the existence of arbitrary deterministic extractors for such sources was not known.more » « less
-
Lysyanskaya, Anna; Handschuh, Helena (Ed.)We study the black-box function inversion problem, which is the problem of finding x[N] such that f(x)=y, given as input some challenge point y in the image of a function f:[N][N], using T oracle queries to f and preprocessed advice 01S depending on f. We prove a number of new results about this problem, as follows. 1. We show an algorithm that works for any T and S satisfying TS2maxST=(N3) . In the important setting when ST, this improves on the celebrated algorithm of Fiat and Naor [STOC, 1991], which requires TS3N3. E.g., Fiat and Naor's algorithm is only non-trivial for SN23 , while our algorithm gives a non-trivial tradeoff for any SN12 . (Our algorithm and analysis are quite simple. As a consequence of this, we also give a self-contained and simple proof of Fiat and Naor's original result, with certain optimizations left out for simplicity.) 2. We show a non-adaptive algorithm (i.e., an algorithm whose ith query xi is chosen based entirely on and y, and not on the f(x1)f(xi−1)) that works for any T and S satisfying S=(Nlog(NT)) giving the first non-trivial non-adaptive algorithm for this problem. E.g., setting T=Npolylog(N) gives S=(NloglogN). This answers a question due to Corrigan-Gibbs and Kogan [TCC, 2019], who asked whether it was possible for a non-adaptive algorithm to work with parameters T and S satisfying T+SlogNo(N) . We also observe that our non-adaptive algorithm is what we call a guess-and-check algorithm, that is, it is non-adaptive and its final output is always one of the oracle queries x1xT. For guess-and-check algorithms, we prove a matching lower bound, therefore completely characterizing the achievable parameters (ST) for this natural class of algorithms. (Corrigan-Gibbs and Kogan showed that any such lower bound for arbitrary non-adaptive algorithms would imply new circuit lower bounds.) 3. We show equivalence between function inversion and a natural decision version of the problem in both the worst case and the average case, and similarly for functions f:[N][M] with different ranges. All of the above results are most naturally described in a model with shared randomness (i.e., random coins shared between the preprocessing algorithm and the online algorithm). However, as an additional contribution, we show (using a technique from communication complexity due to Newman [IPL, 1991]) how to generically convert any algorithm that uses shared randomness into one that does not.more » « less
-
Servedio, Rocco (Ed.)We study the complexity of lattice problems in a world where algorithms, reductions, and protocols can run in superpolynomial time, revisiting four foundational results: two worst-case to average-case reductions and two protocols. We also show a novel protocol. 1. We prove that secret-key cryptography exists if O˜(n‾√)-approximate SVP is hard for 2εn-time algorithms. I.e., we extend to our setting (Micciancio and Regev's improved version of) Ajtai's celebrated polynomial-time worst-case to average-case reduction from O˜(n)-approximate SVP to SIS. 2. We prove that public-key cryptography exists if O˜(n)-approximate SVP is hard for 2εn-time algorithms. This extends to our setting Regev's celebrated polynomial-time worst-case to average-case reduction from O˜(n1.5)-approximate SVP to LWE. In fact, Regev's reduction is quantum, but ours is classical, generalizing Peikert's polynomial-time classical reduction from O˜(n2)-approximate SVP. 3. We show a 2εn-time coAM protocol for O(1)-approximate CVP, generalizing the celebrated polynomial-time protocol for O(n/logn‾‾‾‾‾‾‾√)-CVP due to Goldreich and Goldwasser. These results show complexity-theoretic barriers to extending the recent line of fine-grained hardness results for CVP and SVP to larger approximation factors. (This result also extends to arbitrary norms.) 4. We show a 2εn-time co-non-deterministic protocol for O(logn‾‾‾‾‾√)-approximate SVP, generalizing the (also celebrated!) polynomial-time protocol for O(n‾√)-CVP due to Aharonov and Regev. 5. We give a novel coMA protocol for O(1)-approximate CVP with a 2εn-time verifier. All of the results described above are special cases of more general theorems that achieve time-approximation factor tradeoffs.more » « less
-
Megow, Nicole; Smith, Adam (Ed.)We study the question of when an approximate search optimization problem is harder than the associated decision problem. Specifically, we study a natural and quite general model of black-box search-to-decision reductions, which we call branch-and-bound reductions (in analogy with branch-and-bound algorithms). In this model, an algorithm attempts to minimize (or maximize) a function f: D → ℝ_{≥ 0} by making oracle queries to h_f : T → ℝ_{≥ 0} satisfying min_{x ∈ S} f(x) ≤ h_f(S) ≤ γ ⋅ min_{x ∈ S} f(x) (*) for some γ ≥ 1 and any subset S in some allowed class of subsets T; of the domain D. (When the goal is to maximize f, h_f instead yields an approximation to the maximal value of f over S.) We show tight upper and lower bounds on the number of queries q needed to find even a \gamma'-approximate minimizer (or maximizer) for quite large \gamma'; in a number of interesting settings, as follows. - For arbitrary functions f : {0,1}ⁿ → ℝ_{≥ 0}, where T; contains all subsets of the domain, we show that no branch-and-bound reduction can achieve γ' ≲ γ^{n/log q}, while a simple greedy approach achieves essentially γ^{n/log q}. - For a large class of MAX-CSPs, where T = {S_w} contains each set of assignments to the variables induced by a partial assignment w, we show that no branch-and-bound reduction can do significantly better than essentially a random guess, even when the oracle h_f guarantees an approximation factor of γ ≈ 1+√{log(q)/n}. - For the Traveling Salesperson Problem (TSP), where T = {S_p} contains each set of tours extending a path p, we show that no branch-and-bound reduction can achieve γ' ≲ (γ-1) n/log q. We also prove a nearly matching upper bound in our model. These results show an oracle model in which approximate search and decision are strongly separated. (In particular, our result for TSP can be viewed as a negative answer to a question posed by Bellare and Goldwasser (SIAM J. Comput. 1994), though only in an oracle model.) We also note two alternative interpretations of our results. First, if we view h_f as a data structure, then our results unconditionally rule out black-box search-to-decision reductions for certain data structure problems. Second, if we view h_f as an efficiently computable heuristic, then our results show that any reasonably efficient branch-and-bound algorithm requires more guarantees from its heuristic than simply Eq. (*). Behind our results is a ``useless oracle lemma'' which allows us to argue that under certain conditions the oracle h_f is ``useless'' and which might be of independent interest.more » « less
An official website of the United States government

Full Text Available